Differences between Pandas apply, map and applymap
This tutorial explains the difference between the apply()
, map()
, and methods in Pandas.applymap()
The function associated with applymap()
is applied to all elements of a given DataFrame, hence applymap()
the method is defined only for DataFrames. Similarly, apply()
the function associated with the method can be applied to Series
all elements of a DataFrame or , hence apply()
the method is defined for Series and DataFrame objects. The method in Pandas can be defined map()
only for Series
DataFrame objects.
import pandas as pd
df = pd.DataFrame(
{
"Col 1": [30, 40, 50, 60],
"Col 2": [23, 35, 65, 45],
"Col 3": [85, 87, 90, 89],
},
index=["A", "B", "C", "D"],
)
print(df, "\n")
Output:
Col 1 Col 2 Col 3
A 30 23 85
B 40 35 87
C 50 65 90
D 60 45 89
We will use the DataFrame shown in the above example df
to explain the difference between the apply()
, map()
, and methods in Pandas.applymap()
pandas.DataFrame.applymap()
grammar
DataFrame.applymap(func, na_action=None)
It func
applies the function DataFrame
to each element of .
Example: Using applymap()
the method to change the elements in a DataFrame
import pandas as pd
df = pd.DataFrame(
{
"Col 1": [30, 40, 50, 60],
"Col 2": [23, 35, 65, 45],
"Col 3": [85, 87, 90, 89],
},
index=["A", "B", "C", "D"],
)
print("Initial DataFrame:")
print(df, "\n")
scaled_df = df.applymap(lambda a: a * 10)
print("Scaled DataFrame:")
print(scaled_df, "\n")
Output:
Initial DataFrame:
Col 1 Col 2 Col 3
A 30 23 85
B 40 35 87
C 50 65 90
D 60 45 89
Scaled DataFrame:
Col 1 Col 2 Col 3
A 300 230 850
B 400 350 870
C 500 650 900
D 600 450 890
It df
multiplies each element in the DataFrame and stores the result scaled_df
in the DataFrame. We lambda
pass a function as an argument to applymap()
the function which returns a value by 10
multiplying the input value with . So df
each element in the DataFrame will be scaled to 10.
We can also use for
loop to iterate df
each element in DataFrame, but it makes our code less readable, messy, and less efficient. applymap()
is another alternative that can make the code more readable and efficient.
In addition to mathematical operations, we can also perform other operations on the elements of a DataFrame.
import pandas as pd
df = pd.DataFrame(
{
"Col 1": [30, 40, 50, 60],
"Col 2": [23, 35, 65, 45],
"Col 3": [85, 87, 90, 89],
},
index=["A", "B", "C", "D"],
)
print("Initial DataFrame:")
print(df, "\n")
altered_df = df.applymap(lambda a: str(a) + ".00")
print("Altered DataFrame:")
print(altered_df, "\n")
Output:
Initial DataFrame:
Col 1 Col 2 Col 3
A 30 23 85
B 40 35 87
C 50 65 90
D 60 45 89
Altered DataFrame:
Col 1 Col 2 Col 3
A 30.00 23.00 85.00
B 40.00 35.00 87.00
C 50.00 65.00 90.00
D 60.00 45.00 89.00
It df
is added at the end of each element in the DataFrame .00
.
map()
Methods in Pandas
import pandas as pd
df = pd.DataFrame(
{
"Col 1": [30, 40, 50, 60],
"Col 2": [23, 35, 65, 45],
"Col 3": [85, 87, 90, 89],
},
index=["A", "B", "C", "D"],
)
print("Initial DataFrame:")
print(df, "\n")
df["Col 1"] = df["Col 1"].map(lambda x: x / 100)
print("DataFrame after altering Col 1:")
print(df)
Output:
Initial DataFrame:
Col 1 Col 2 Col 3
A 30 23 85
B 40 35 87
C 50 65 90
D 60 45 89
DataFrame after altering Col 1:
Col 1 Col 2 Col 3
A 0.3 23 85
B 0.4 35 87
C 0.5 65 90
D 0.6 45 89
We can use the method only on specific columns of a DataFrame map()
.
apply()
Methods in Pandas
apply()
Methods to change the entire DataFrame in Pandas
import pandas as pd
df = pd.DataFrame(
{
"Col 1": [30, 40, 50, 60],
"Col 2": [23, 35, 65, 45],
"Col 3": [85, 87, 90, 89],
},
index=["A", "B", "C", "D"],
)
print("Initial DataFrame:")
print(df, "\n")
altered_df = df.apply(lambda x: x / 100)
print("Altered DataFrame:")
print(altered_df, "\n")
Output:
Initial DataFrame:
Col 1 Col 2 Col 3
A 30 23 85
B 40 35 87
C 50 65 90
D 60 45 89
Altered DataFrame:
Col 1 Col 2 Col 3
A 0.3 0.23 0.85
B 0.4 0.35 0.87
C 0.5 0.65 0.90
D 0.6 0.45 0.89
apply()
Method to modify only one column in Pandas
import pandas as pd
df = pd.DataFrame(
{
"Col 1": [30, 40, 50, 60],
"Col 2": [23, 35, 65, 45],
"Col 3": [85, 87, 90, 89],
},
index=["A", "B", "C", "D"],
)
print("Initial DataFrame:")
print(df, "\n")
df["Col 1"] = df["Col 1"].apply(lambda x: x / 100)
print("DataFrame after altering Col 1:")
print(df)
Output:
Initial DataFrame:
Col 1 Col 2 Col 3
A 30 23 85
B 40 35 87
C 50 65 90
D 60 45 89
DataFrame after altering Col 1:
Col 1 Col 2 Col 3
A 0.3 23 85
B 0.4 35 87
C 0.5 65 90
D 0.6 45 89
So, from the above examples, we can see that apply()
methods can be used to apply a particular function to all the elements of the entire DataFrame or all the elements of a particular column.
For reprinting, please send an email to 1244347461@qq.com for approval. After obtaining the author's consent, kindly include the source as a link.
Related Articles
How to Convert DataFrame Column to String in Pandas
Publish Date:2025/05/02 Views:161 Category:Python
-
We will look at methods for converting Pandas DataFrame columns to strings. Pandas Series.astype(str) Method DataFrame.apply() Methods operate on the elements in a column We will use the same DataFrame below in this article. import pandas a
How to count the frequency of values in a Pandas DataFrame
Publish Date:2025/05/02 Views:84 Category:Python
-
Sometimes, when you use DataFrame , you may want to count the number of times a value occurs in a column, or in other words, calculate the frequency. There are mainly three methods used for this. Let's look at them one by one. df.groupby().
How to get value from Pandas DataFrame cell
Publish Date:2025/05/02 Views:147 Category:Python
-
We'll look at using to get values from cells in iloc Pandas , which is great for selecting by position, and how it differs from . We'll also learn about the and methods, which we can use when we don't want to set the return type to .
How to Add a Row to a Pandas DataFrame
Publish Date:2025/05/02 Views:127 Category:Python
-
Pandas is designed to load a fully populated DataFrame . We can pandas.DataFrame add them one by one in . This can be done by using various methods, such as .loc , dictionary, pandas.concat() or DataFrame.append() . .loc [index] Add rows to
How to change the order of Panas DataFrame columns
Publish Date:2025/05/02 Views:184 Category:Python
-
We will show how to use insert and reindex to change the order of columns in different ways pandas.DataFrame , such as assigning column names in a desired order. pandas.DataFrame Sort the columns in the new order The easiest way is columns
How to pretty print an entire Pandas Series/DataFrame
Publish Date:2025/05/02 Views:167 Category:Python
-
We will introduce various methods to pretty print the entire Pandas Series/DataFrame, such as option_context, set_option, and options.display. option_context Pretty Printing Pandas DataFrame We can option_context use with one or more option
How to count the number of NaN occurrences in a Pandas Dataframe column
Publish Date:2025/05/02 Views:144 Category:Python
-
We will look at methods for counting the number of NaN occurrences in a column of a Pandas DataFrame. We have a number of options, including isna() the method for one or more columns, by NaN subtracting the total length from the number of o
How to Convert a Pandas Dataframe to a NumPy Array
Publish Date:2025/05/02 Views:151 Category:Python
-
We will introduce to_numpy() the method to pandas.Dataframe convert a to NumPy an array, which is introduced in pandas v0.24.0, replacing the old .values method. We can define it on Index , Series , and DataFrame objects to_numpy . The old
How to add a header row to a Pandas DataFrame
Publish Date:2025/05/02 Views:161 Category:Python
-
We will look at methods for adding a header row to a pandas dataframe, as well as the option to pass in the names directly in the dataframe or by assigning the column names in a list directly to dataframe.columns the method. We will also in